The molecular evolution of signal peptides.
نویسندگان
چکیده
Signal peptides direct mature peptides to their appropriate cellular location, after which they are cleaved off. Very many random alternatives can serve the same function. Of all coding sequences, therefore, signal peptides might come closest to being neutrally evolving. Here we consider this issue by examining the molecular evolution of 76 mouse-rat orthologues, each with defined signal peptides. Although they do evolve rapidly, they evolve about half as fast as neutral sequences. This indicates that a substantial proportion of mutations must be under stabilizing selection. A few putative signal sequences lack a hydrophobic core and these tend to be more slowly evolving than others, indicating even stronger stabilizing selection. However, closer scrutiny suggests that some of these represent mis-annotations in GenBank. It is also likely that some of the substitutions are not neutral. We find, for example, that the rate of protein evolution correlates with that of the mature peptide. This may be a result of compensatory evolution. We also find that signal peptides of immune genes tend to be faster evolving than the average, which suggests an association with antagonistic co-evolution. Previous reports also indicated that the signal peptide of the imprinted gene, Igf2r, is also unusually fast evolving. This, it was hypothesized, might also be indicative of antagonistic co-evolution. Comparison of Igf2r's signal peptide evolution shows that, although it is not an outlier, its rate of evolution is comparable to that of many of the faster evolving immune system signal sequences and 5/6 of the amino acid changes do not conserve hydrophobicity. This is at least suggestive that there is something unusual about Igf2r's signal sequence.
منابع مشابه
In silico analysis of suitable signal peptides for secretion of a recombinant alcohol dehydrogenase with a key role in atorvastatin enzymatic synthesis
An elevated cholesterol level might lead to cardiovascular disease (CVD). Statins block the cholesterol synthesis pathway in the liver. Atorvastatin is the most widespread statin worldwide and, its chemical synthesis requires toxic catalysts, resulting in environmental pollution. Hence, enzymatic synthesis of atorvastatin is desirable. This process could be done by Lactobacillus kefir ...
متن کاملIdentification of Aptamer-Binding Sites in Hepatitis C Virus Envelope Glycoprotein E2
Hepatitis C Virus (HCV) encodes two envelope glycoproteins, E1 and E2. Our previous work selected a specific aptamer ZE2, which could bind to E2 with high affinity, with a great potential for developing new molecular probes as an early diagnostic reagents or therapeutic drugs targeting HCV. In this study, the binding sites between E2 and aptamer ZE2 were further explored. E2 was truncated to 15...
متن کاملIn silico analysis of suitable signal peptides for secretion of a recombinant alcohol dehydrogenase with a key role in atorvastatin enzymatic synthesis
An elevated cholesterol level might lead to cardiovascular disease (CVD). Statins block the cholesterol synthesis pathway in the liver. Atorvastatin is the most widespread statin worldwide and, its chemical synthesis requires toxic catalysts, resulting in environmental pollution. Hence, enzymatic synthesis of atorvastatin is desirable. This process could be done by Lactobacillus kefir ...
متن کاملPeriplasmic expression of Bacillus thermocatenulatus lipase in Escherichia coli in presence of different signal sequences
Efforts to express lipase in the periplasmic space of Escherichia coli have so far been unsuccessful andmost of the expressed recombinant lipases accumulate in the insoluble cell fraction. To evaluate the role ofnative and heterologous signal peptides in translocation of the lipase across the inner membrane of E. coli,the lipase gene (btl2) was cloned downstream of the native ...
متن کاملDesigning a new tetrapeptide to inhibit the BIR3 domain of the XIAP protein via molecular dynamics simulations
The XIAP protein is a member of apoptosis proteins family. The XIAP protein plays a central role in the inhibition of apoptosis and consists of three Baculoviral IAP Repeat domains. The BIR3 domain binds directly to the N-terminal of caspase-9 and therefore it inhibits apoptosis. N-terminal tetrapeptide region of SMAC protein can bind to BIR3, inhibit it and subsequently induce apoptosis. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 253 2 شماره
صفحات -
تاریخ انتشار 2000